		Basavarajeswari Group of Institutions BALLARI INSTITUTE OF TECHNOLOGY & MANAGEI	MENT	
		(Autonomous Institute under Visvesvaraya Technological University, Belaga		
US	N	Course Code 2 3	M C	A 1 1
Dura		First Semester MCA Degree Examinations, November 2 THEMATICAL FOUNDATION FOR COMPUTER APPLI ^{3 hrs}	CATIO	DNS Marks: 100
Note:	2.	Answer any FIVE full questions, choosing ONE full question from each module. Use of Mathematics Formula Handbook is permitted. Iissing data, if any, may be suitably assumed		
<u>Q.</u> N		<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)
		$\underline{MODULE-1}$		
1.	a.	Draw the Venn diagrams for the following. (i) $A\Delta B$ (ii) \overline{A} (iii) $A-B$ (iv) $A \cap B$.	06	(2:1:1.2.1)
	b.	Let $A = \{1, 2, 3, 4\}$ and let R be the relation on A defined by xRy if and only if "x divides y", written $x \mid y$.(a) Write down R as a set of ordered pairs (b) Draw the digraph of R .(c) Determine the in-degrees and out degrees of the vertices in the digraph	07	(2:1: 1.2.1)
	c.	Define the following relations with an example: (i) Reflexive (ii) Symmetric (iii) Transitive (iv) Equivalence.	07	(2:1:1.2.1)
•		(OR)	0.6	(2, 1, 1, 2, 1)
2.	a.	Consider the functions f and g defined by $f(x) = x^3$ and $g(x) = x^2 + 1, \forall x \in \mathbb{R}$. Find gof, fog, f^2 and g^2		(2:1:1.2.1)
	b.	Let $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 3 & 5 & 1 & 2 & 6 \end{pmatrix}$ be a permutation of the set $A = \{1, 2, 3, 4, 5, 6\}$.	07	(2:1: 1.2.1)
		(i) Write p as a product of disjoint cycles. (ii) Compute p^{-1} (iii) Compute p^{2} and p^{3}		
	c.	Given $f(x) = \frac{(x+1)}{2}$, $g(x) = \frac{(x-1)}{2} \forall x \in R$, verify that $(gof)^{-1} = f^{-1}og^{-1}$	07	(2:1:1.2.1)
		$\underline{MODULE - 2}$		
3.	a.	Define proposition with an example. Draw truth table for $p \land q$, $p \lor q$, $p \to q$ and $p \leftrightarrow q$	06	(2:2:1.2.1)
	b.	Express the negations of the following statements using quantifiers and in English:(i) If the teacher is absent, then some students do not keep quiet.(ii) All the students keep quiet, and the teacher is present.(iii) Some of the students do not keep quiet or the teacher is absent.	07	(2:2: 1.2.1)
	c.	Show by indirect method of proof, $\forall x (p(x) \lor q(x)) \Rightarrow (\forall x p(x)) \lor (\exists x q(x)).$	07	(2:2:1.2.1)
		(OR)		
4.	a.	Write truth table for $(\neg (q \rightarrow r) \land r) \land (p \rightarrow q)$.	06	(2:2:1.2.1)
	b.	Show that $t \wedge s$ can be derived from the premises $p \rightarrow q$, $q \rightarrow \neg r$, r , and $p \lor (t \land s)$	07	(2:2: 1.2.1)

	c.	Show that the following set of premises is inconsistent: "If Rama gets his degree, he will go for a job", "If he goes for a job, he will get married soon", "If he goes for higher study, he will not get married", "Rama gets his degree and goes for higher study".								07	(2 :2: 1.2.1)
					MO	DULE –	<u>3</u>				
5.	a.	Calculate the mean and standard deviation for the following data.								06	(2:3:1.2.1)
		Marks	Marks 90-99 80-89 70-79 60-69 50-59 40-49 30-39						30-39		
		Number of students	2	12	22	20	14	4	1		
	b.		l oon of t	vo obcor	Trationali	127.5	and their	gaoma	ria maan	07	(2:3: 1.2.1)
	υ.	The arithmetic mean of two observations is 127.5 and their geometric mean is 60. Find their harmonic mean, and the two observations?								07	(2.3. 1.2.1)
	c.										(2:3:1.2.1)
		C. I. 93-97	98-102	103-107	108-112	113-117	118-122	123-127	128-132	01	()
		f 3	5	12	17	14	6	3	1		
	(OR)										
6.	a.	From the following	ng data.	Calculate		. ,	(ii) Decil	e D6		06	(2:3:1.2.1)
		(iii) Percentile P4									(···· / /
		X 10-14	15-19						otal		
		Y 5	10	15	20	10	5		65		
	b.	Find the equation						-		07	(2:3: 1.2.1)
		hence estimate the value of the dependent variable corresponding to the value 30 of the independent variable.									
			-	5	10	15	20	25			
		y	7	16	19	23	26	30			
	c.	From the data \overline{gi}	ven belo	w, find t	he two r	egression	n coeffic	ients and	d the two	07	(2:3:1.2.1)
		regression equations?									
			97 108 75 69	<u>3 121</u> 97		24 51 1 39		111 5'			
	Y 71 75 69 97 70 91 39 61 80 47 MODULE – 4										
7.	a.	Find the value of	of k suc	h that th				represe	nts finite	06	(2:4:1.2.1)
		probability distri				-		-			
		find $P(x \le 1)$, F	P(x > 1)	, P(-1	$< x \le 2$)					
		x -3 -2 -1 0 1 2 3									
		P(x) = k		k	3 <i>k</i>	4k	3 <i>k</i>	2k	k		
	b.	The number of a		•			-			07	(2:4: 1.2.1)
		distribution with mean 3. Out of 1000 taxi drivers find approximately the number of drivers with (i) no accidents in a year (ii) more than 3 accidents in									
		year.	5 with (1)			i year (II) more u		idents in		
	c.	When a coin is to	ossed 4 t	imes. fir	nd the pro	obability	of gettir	ng (i) ex	actly one	07	(2:4:1.2.1)
		head (ii) at most			-	•	8- 8	-8 (-)		• •	(,
						(OR)					
8.	a.	Evaluate the fol	lowing 1	orobabili		, ,	In of no	rmal m	obability	06	(2:4:1.2.1)
5.		tables.		-			-	-	southty		(1.2.1)
		$(i)P(z \ge 0.85)($	<i>ii)</i> ₽(−1	$.64 \le z$	≤ −0.88	3)(iii)P($ z \leq 1.9$	94)			
	b.	The length of te	lephone	convers	ation in	a booth	has bee	n an ex	ponential	07	(2:4: 1.2.1)
		distribution and found on an average to be 5 minutes. Find the probability							obability		
		that a random call made from this booth (i) ends less than 5 minutes (ii)									
		between 5 and 10									

Note: (RBTL - Revised Bloom's Taxonomy Level: CO - Course Outcome: PI - Performance Indicator)

The marks of 1000 students in an examination follow a normal distribution 07 with mean 70 and standard deviation 5. Find the number of students whose marks will be (i) less than 65 (ii) more than 75 (iii) between 65 to 75. [Given P(1)=0.3413]

MODULE – 5

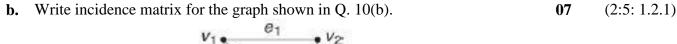
- Define with examples (i) simple graph (ii) complete graph (iii) Bipartite 9. (2:5:1.2.1)a. 06 graph
 - Prove that the sum of the degrees of all the vertices of an undirected graph is b. 07 (2:5: 1.2.1)twice the number of edges of the graph and hence even.
 - Prove that, in every graph, the number of vertices of odd degrees is even. 07 (2:5:1.2.1)c.

(**OR**)

- For each of the following degree sequences, find if there exists a simple 10. a. 06 (2:5:1.2.1)graph. In each case, either draw a graph or explain why no graphs exists.
 - 4, 4, 4, 3, 2 (i).

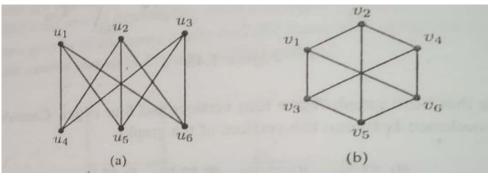
c.

c.


isomorphc.

- (ii). 5, 5, 4, 3, 2, 1
- 3, 3, 3, 3, 2 (iii).
- (iv). 3, 3, 3, 3, 3, 3
- 8, 7, 7, 6, 4, 2, 1, 1 (v).

 V_1


θ4

 V_4

62

Q. 10(b)

05

03

Define Isomorphosm. Also verify the two graphs shown in Q. 10(c) are

Q. 10(c)

** ** **

(2:5:1.2.1)

07

(2:4:1.2.1)