Basavarajeswari Group of Institutions

BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN

~ ~ .						
Course Code	2	1	E	С	6	3

Sixth Semester B.E. Degree Examinations – September 2024 FUNDAMENTALS OF VLSI DESIGN

Duration: 3 hrs

Max. Marks: 100

Note: 1. Answer any FIVE full questions choosing ONE full Question from each Module. 2. Missing data, if any, may be suitably assumed

<u>O. No</u> <u>Question</u>		<u>Marks</u>	(RBTL:CO:PO)				
Module-1							
1.	 a. Explain the following non ideal effects of MOS device 1. Channel length modulation 2. Body effect. 	6	2:1:1.6.1				
	b. What is a noise margin? Obtain the values of VIL, VOL, VIH and VOH from transfer characteristics of a typical inverter.	6	2:1:1.6.1				
	c. Explain the ideal IV characteristics of nMOS transistor. Derive the equation for I _{DS} Cut off, Linear and Saturation region OR	8	2:1:1.6.1				
2.	a. With neat diagram, explain the nMOS fabrication steps.	6	2:1:1.6.1				
	b. Compare Bipolar and CMOS technology.	6	2:1:1.6.1				
	c. Explain the CMOS inverter transfer characteristics by highlighting the regions of the MOS transistor.	8	2:1:1.6.1				
	Module-2						
3.	a. Explain with circuit diagram the super buffers with inverting type and non-inverting type of nMOS.	6	2:1:1.6.1				
	b. Draw the schematic, stick diagram and Layout for 2 input CMOS NOR gate.	6	2:2:1.6.1				
	c. Derive expressions for rise time and fall time for 1:1 CMOS inverter.	8	3:1:1.7.1				
OR							
4.	a. What are the different MOS Layers? Discuss the λ based design rules for layers and transistors.	6	2:2:1.6.1				
	b. Calculate the area capacitance values associated with the following structure, having different layers as shown in figure 4.1.	6	3:2:1.7.1				
	3λ 3λ Metal Metal Metal Diffusion Fig 4.1						

Note: relative "C' value for polysilicon-to-substrate=0.1 pf x $10^{-4}/\mu m^2$ and metal1-to-substrate=0.075 pf x $10^{-4}/\mu m^2$.

	c. Derive the expression for total delay for N stage of NMOS and inverters by assuming the width factor f=e.	CMOS 8	3:2:1.7.1
	Module-3		
5.	 a. Derive the scaling factor for the following parameter 1. Channel resistance. 2. Parasitic capacitance. 3. Gate delay. 	6	3:1:1.7.1
	b. Explain carry select adder with neat block diagram.	6	2:2:1.6.1
	c. Explain dynamic and Domino logic families with its advantag disadvantages.	ges and 8	2:2:1.6.1
	OR		
6.	a. With truth table explain the operation of 2 input NAND using pnMOS logic.	pseudo 6	2:2:1.6.1
	b. With relevant diagram discuss Manchester carry chain operation.	. 6	2:2:1.6.1
	 Explain ALU functions like EX-OR, EX-NOR, AND and OR operatio an adder. Draw the block diagram of 4-bit ALU using adder element. Module-4 	ons with 8	2:2:1.6.1
7.	 a. Explain the following logics 1. clocked CMOS logic 2.n-p CMOS logic 	6	2:2:1.6.1
	b. Draw the block diagram of generic structure of FPGA fabr explain it.	ric and 6	2:4:1.6.1
	c. Explain parity generator with NMOS implementation with diagram.	n stick 8	2:2:1.6.1
	OR		
8.	a. Discuss the architectural issues related to VLSI sub system design	n. 6	2:2:1.6.1
	b. Explain the goals and techniques of FPGA based system design.	6	2:4:1.6.1
	c. Explain 4-way data selector (multiplexer) with Boolean expressinnMOS stick diagram.	on and 8	2:2:1.6.1
	Module-5		
9.	a. Explain scan-based design with necessary diagrams.	6	2:5:1.6.1
	b. What are the requirements for system timing considerations.	6	2:3:1.6.1
	c. Explain 3 transistor dynamic RAM cell with schematic diagram.	8	2:3:1.6.1
	OR		
10	a. Explain logic verification principles.	6	2:5:1.6.1
	b. Explain nMOS pseudo static RAM cell with its schematic.	6	2:3:1.6.1
	c. Explain the following 1. Ad hoc testing 2. BIST	8	2:5:1.6.1

** ** **