\square

$\mathbf{2}$	$\mathbf{1}$	\mathbf{M}	\mathbf{C}	\mathbf{S}	$\mathbf{3}$	$\mathbf{1}$

Third Semester B.E. Degree Examinations, April/May 2023

FOURIER TRANSFORM, NUMERICAL METHODS \& DISCRETE MATHEMATICS

Duration: 3 hrs
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Missing data, if any, may be suitably assumed
O. No

Question
MODULE - 1

1. a.

Find the Fourier Transform of $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a\end{array}\right.$ and hence deduce that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.
b. Find the Fourier Transform of $f(x)=e^{-|x|}$.
c. If $f(x)=\left\{\begin{array}{ll}1-\mathrm{x}^{2} & ,|x|<1 \\ 0 & ,|x| \geq 1\end{array}\right.$ find the Fourier Transform of $f(x)$ and hence find the value of $\int_{0}^{\infty} \frac{x \cos x-\sin x}{x^{3}} d x$.

> OR
2. a. Find the Fourier Sine Transform of $f(x)=e^{-|x|}$ and hence evaluate $\int_{0}^{\infty} \frac{x \sin m x}{1+x^{2}} d x, m>0$.
b. Find the Fourier Sine and Cosine Transform of $f(x)=\left\{\begin{array}{lll}\mathrm{x} & 0<\mathrm{x}<2 & \mathbf{0 7} \\ 0 & \text { elsewhere }\end{array}\right.$
c. Find the Fourier Sine transform of $\frac{e^{-a x}}{x}, a>0$.

MODULE - 2

3. a. Use Taylor's series method to find y at $x=0.1$ considering terms up to the $\mathbf{0 6}$ third degree given that $\frac{d y}{d x}=x^{2}+y^{2}$ and $y(0)=1$.
b. Using modified Euler's method find $y(0.1)$ correct to four decimal places $\mathbf{0 7}$
solving the equation $\frac{d y}{d x}=x-y^{2}, \mathrm{y}(0)=1$ taking $\mathrm{h}=0.1$
c. Use Runge-Kutta method of fourth order, find $\mathrm{y}(0.2)$ for the equation $\mathbf{0 7}$ $\frac{d y}{d x}=\frac{y-x}{y+x}, \mathrm{y}(0)=1$ taking $\mathrm{h}=0.2$.
4. a. Given that $\frac{d y}{d x}=x-y^{2}$ and the data $y(0)=0, y(0.2)=0.02$,
$y(0.4)=0.0795, y(0.6)=0.1762$. Compute y at $\mathrm{x}=0.8$ by applying Milne's method.
b. Given $\frac{d y}{d x}+\frac{y}{x}=\frac{1}{x^{2}}$ compute $\mathrm{y}(1.4)$ by applying Adams-Bashforth method given that

x	1	1.1	1.2	1.3
y	1	0.996	0.986	0.972

c. Use Modified Euler's method to find y (20.2) given that
$\frac{d y}{d x}=\log _{10}\left(\frac{x}{y}\right)$ with $\mathrm{y}(20)=5$ and $\mathrm{h}=0.2$.

MODULE - 3

5. a. Show that, for any propositions p and q, the compound proposition $p \wedge(\neg p \wedge q)$ is a contradiction.
b. Prove that, for any propositions p, q, r the compound proposition $[(p \rightarrow q) \wedge(q \rightarrow r)] \rightarrow(p \rightarrow r)$ is a tautology.
c. Prove the compound proposition $(p \rightarrow q) \wedge[\neg q \wedge(r \vee \neg q)] \Leftrightarrow \neg(q \vee p)$ 07 is logical equivalence.

OR

6. a. State the converse, inverse and contra positive of the following conditions:
(i). If a quadrilateral is a parallelogram, then its diagonals bisect each other.
(ii). If a real number x^{2} is greater than zero, then x is not equal to zero
(iii). If a triangle is not isosceles, then it is not equilateral.
b. Test whether the following is a valid argument.

If I drive to work, then I will arrive tired.
I am not tired (when I arrive at work).
$\therefore I$ do not drive to work
c. Let $p(x): x^{2}-7 x+10, q(x): x^{2}-2 x-3, r(x): x<0$. Determine the truth or falsity of the following statements when the universe U contains only the integers 2 and 5.
(i) $\forall x, p(x) \rightarrow \neg r(x)$
(ii) $\forall x, q(x) \rightarrow r(x)$
(iii) $\exists x, p(x) \rightarrow r(x)$

MODULE - 4

7. a. Let $A=\{1,2,3,4,6\}$ and R be a relation on A defined by $a R b$ if and only
if a divides b. Represent the relation R as a matrix and draw its digraph.
b. Let $A=\{a, b, c\}$, and R and S be relations on A whose matrices are as given below:
$M_{R}=\left[\begin{array}{lll}1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right] ; M_{S}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$
Find RoS, SoR, RoR, SoS and their matrices.
c. A relation R on a set $A=\{a, b, c, d\}$ is represented by the following matrix:
$M_{R}=\left[\begin{array}{llll}1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1\end{array}\right]$. Determine whether R is an equivalence relation.
OR
8. a. Let R is a relation on a non-empty set A defined as
$R=\{(a, b): a \equiv b \bmod m\}$ or $R=\{(a, b): m$ divides $(a-b)\}$.
Show that R is an equivalence relation.
b. Draw the Hasse diagram representing the positive divisors of 36

07
c. Consider the Hasse diagram of a poset (A, R) given below.

06

If $B=\{c, d, e\}$, find (i) all upper bounds of B, (ii) all lower bounds of B, (iii) the least upper bound of B, (iv) the greatest lower bound of B.

MODULE - 5

9. a. Let f and g be functions from R to R defined by $f(x)=a x+b$ and $g(x)=1-x+x^{2}$. If $(g o f)(x)=9 x^{2}-9 x+3$, determine a, b.
b. Let $f: A \rightarrow B$ and $g: B \rightarrow C$ be any two functions.

Then the following are true:
(i). If f and g are one-to-one, so is $g o f$.
(ii). If f and g are onto, so is $g o f$.
c. Given $p=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6\end{array}\right)$, compute p^{-1}, p^{2}, and p^{3}.

OR
10. a. Solve the recurrence relation
$F_{n+2}=F_{n+1}+F_{n}$ for $n \geq 0$
Given $F_{0}=0, F_{1}=1$
b. Solve the recurrence relation
$2 a_{n+3}=a_{n+2}+2 a_{n+1}-a_{n}$ for $n \geq 0$ with $a_{0}=0, a_{1}=1, a_{2}=2$.
c. Solve the recurrence relation 07
$a_{n}-6 a_{n-1}+8 a_{n-2}=9$ for $n \geq 2$, given that $a_{0}=10, a_{1}=25$.

