		Basavarajeswari Group of Institutions BALLARI INSTITUTE OF TECHNOLOGY & MANAG	EMEN	Т			
USI	N	(Autonomous Institute under Visvesvaraya Technological University, Bez	1 M	C S 3 1			
Third Semester B.E. Degree Examinations, April/May 2023 FOURIER TRANSFORM, NUMERICAL METHODS & DISCRETE MATHEMATICS							
Dura Note	ation : 1 2.	: 3 hrs . Answer any FIVE full questions, choosing ONE full question from each modul Missing data, if any, may be suitably assumed	N le.	Iax. Marks: 100			
O. No		Question	<u>Marks</u>	(RBTL:CO:PI)			
		<u>MODULE – 1</u>		·			
1.	a.	Find the Fourier Transform of $f(x) = \begin{cases} 1 & \text{for } x \le a \\ 0 & \text{for } x > a \end{cases}$ and hence deduce	06	(2:1:1.2.1)			
		that $\int_{0}^{\infty} \frac{\sin x}{dx} dx = \frac{\pi}{dx}$.					
	h	$\int_{0}^{y} x = 2$	07	$(2 \cdot 1 \cdot 1 \cdot 2 \cdot 1)$			
	υ.	Find the Fourier Transform of $f(x) = e^{- x }$.	07	$(2 \cdot 1 \cdot 1 \cdot 2 \cdot 1)$			
	c.	If $f(x) = \begin{cases} 1-x^2, x < 1\\ 0, x \ge 1 \end{cases}$ find the Fourier Transform of $f(x)$ and hence	07	(2:1:1.2.1)			
		find the value of $\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^{3}} dx.$					
		OR					
2.	a.	Find the Fourier Sine Transform of $f(x) = e^{- x }$ and hence	06	(2:1:1.2.1)			
		evaluate $\int_{0}^{\infty} \frac{x \sin mx}{1+x^2} dx, m > 0.$					
	b.	Find the Fourier Sine and Cosine Transform of $f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$	07	(2:1:1.2.1)			
	c.	Find the Fourier Sine transform of $\frac{e^{-ax}}{r}$, $a > 0$.	07	(2:1:1.2.1)			
		<u>MODULE – 2</u>					
3.	a.	Use Taylor's series method to find y at $x=0.1$ considering terms up to the	06	(2:2:1.2.1)			
		third degree given that $\frac{dy}{dx} = x^2 + y^2$ and $y(0) = 1$.					
	b.	Using modified Euler's method find $y(0.1)$ correct to four decimal places	07	(2:2:1.2.1)			
		solving the equation $\frac{dy}{dx} = x - y^2$, y(0)=1 taking h= 0.1					
	c.	Use Runge-Kutta method of fourth order, find $y(0.2)$ for the equation	07	(2:2:1.2.1)			
		$\frac{dy}{dx} = \frac{y - x}{y + x}, y(0) = 1 \text{ taking h} = 0.2.$					
		OR					

Note: (RBTL - Revised Bloom's Taxonomy Level: CO - Course Outcome: PI - Performance Indicator)

4.	a.	Given that $\frac{dy}{dx} = x - y^2$ and the data $y(0) = 0$, $y(0.2) = 0.02$,	06	(2:2:1.2.1)
		y(0.4) = 0.0795, $y(0.6) = 0.1762$. Compute y at x=0.8 by applying		
		Milne's method.		
	b.	Given $\frac{dy}{dx} + \frac{y}{x} = \frac{1}{x^2}$ compute y(1.4) by applying Adams-Bashforth	07	(2:2:1.2.1)
		method given that		
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		
	c.	Use Modified Euler's method to find y (20.2) given that	07	(2:2:1.2.1)
		$\frac{dy}{dx} = \log_{10}\left(\frac{x}{y}\right) \text{ with y (20) = 5 and h=0.2.}$		
		MODULE – 3		
5.	a.	Show that, for any propositions p and q , the compound proposition	06	(2:3:1.2.1)
		$p \wedge (\neg p \wedge q)$ is a contradiction.		
	b.	Prove that, for any propositions p,q,r the compound proposition	07	(2:3:1.2.1)
		$\lfloor (p \to q) \land (q \to r) \rfloor \to (p \to r)$ is a tautology.		
	c.	Prove the compound proposition $(p \rightarrow q) \land [\neg q \land (r \lor \neg q)] \Leftrightarrow \neg (q \lor p)$	07	(2:3:1.2.1)
		is logical equivalence.		
6	a	OR State the converse inverse and contra positive of the following	06	$(2 \cdot 3 \cdot 1 \cdot 2 \cdot 1)$
υ.	a.	conditions:	00	(2.5.1.2.1)
		(i). If a quadrilateral is a parallelogram, then its diagonals bisect each other.		
		(ii). If a real number x^2 is greater than zero, then x is not equal to zero (iii) If a triangle is not inequaled, then it is not equilateral		
	b.	Test whether the following is a valid argument.	07	(2:3:1.2.1)
		If I drive to work, then I will arrive tired.		
		I am not tired (when I arrive at work).		
	c.	Let $p(x): x^2 - 7x + 10$, $q(x): x^2 - 2x - 3$, $r(x): x < 0$. Determine the truth	07	(2:3:1.2.1)
		or falsity of the following statements when the universe U contains only		
		the integers 2 and 5.		
		(i) $\forall x, p(x) \rightarrow \neg r(x)$		
		(ii) $\forall x, q(x) \rightarrow r(x)$		
		(iii) $\exists x, p(x) \rightarrow r(x)$		
		$\underline{MODULE-4}$		
7.	a.	Let $A = \{1, 2, 3, 4, 6\}$ and R be a relation on A defined by aRb if and only	06	(2:4:1.2.1)
		if a divides b . Represent the relation R as a matrix and draw its digraph.	07	(2, 4, 1, 2, 1)
	b.	Let $A = \{a, b, c\}$, and R and S be relations on A whose matrices are as	07	(2:4:1.2.1)
		given below: $\begin{bmatrix} 1 & 0 & 1 \end{bmatrix}$		
		$M = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \cdot M = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \end{bmatrix}$		
		$M_R = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix}; M_S = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$		

Find RoS, SoR, RoR, SoS and their matrices.

Note: (RBTL - Revised Bloom's Taxonomy Level: CO - Course Outcome: PI - Performance Indicator)

c. A relation *R* on a set $A = \{a, b, c, d\}$ is represented by the following **07** (2:4:1.2.1) matrix:

 $M_{R} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$ Determine whether *R* is an equivalence relation.

OR

- 8. a. Let R is a relation on a non-empty set A defined as R = {(a,b): a ≡ b mod m} or R = {(a,b): m divides (a-b)}. Show that R is an equivalence relation.
 b. Draw the Hasse diagram representing the positive divisors of 36
 07 (2:4:1.2.1)
 - **c.** Consider the Hasse diagram of a poset (A, R) given below. **07** (2:4:1.2.1)

If $B = \{c, d, e\}$, find (i) all upper bounds of B, (ii) all lower bounds of

B, (iii) the least upper bound of B, (iv) the greatest lower bound of B.

MODULE – 5

9.	a.	Let f and g be functions from R to R defined by $f(x) = ax + b$ and	06	(2:5:1.2.1)
		$g(x) = 1 - x + x^2$. If $(gof)(x) = 9x^2 - 9x + 3$, determine <i>a</i> , <i>b</i> .		
	b.	Let $f: A \to B$ and $g: B \to C$ be any two functions.	07	(2:5:1.2.1)
		Then the following are true:		
		(i). If f and g are one-to-one, so is gof .		
		(ii). If f and g are onto, so is gof .		
	c.	Given $p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix}$, compute p^{-1}, p^2 , and p^3 .	07	(2:5:1.2.1)
		OR		
10.	a.	Solve the recurrence relation	06	(2:5:1.2.1)
		$F_{n+2} = F_{n+1} + F_n$ for $n \ge 0$		
		Given $F_0 = 0, F_1 = 1$		
	b.	Solve the recurrence relation	07	(2:5:1.2.1)
		$2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$ for $n \ge 0$ with $a_0 = 0, a_1 = 1, a_2 = 2$.		
	c.	Solve the recurrence relation	07	(2:5:1.2.1)
		$a_n - 6a_{n-1} + 8a_{n-2} = 9$ for $n \ge 2$, given that $a_0 = 10, a_1 = 25$.		