BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN Course Code 2 | 1 | M | C | M | 3 | 1

Third Semester B.E. Degree Examinations, April/May 2023

INTERGRAL TRANSFORMS AND NUMERICAL METHODS

(Common to ME & CV)

Duration: 3 hrs Max. Marks: 100

Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. Missing data, if any, may be suitably assumed

Q. No		<u>Question</u>		(RBTL:CO:PI)					
<u>MODULE – 1</u>									
1.	a.	State and prove Euler's formulae in Fourier series.	06	(3:1:1.2.1)					
	b.	Find the Fourier series of $f(x) = x(2\pi - x)$ in $0 < x < 2\pi$.	07	(2:1:1.2.1)					
	c.	Express y as a Fourier Series up to the second harmonics for the following data.	07	(2:1:1.2.1)					
		x 0 1 2 3 4 5							
		y 4 8 15 7 6 2							
	OR								
2.	a.	Obtain the Fourier series to represent $f(x) = x $ in $(-l,l)$.	06	(2:1:1.2.1)					
	b.	Obtain the Cosine half range Fourier series of	07	(2:1:1.2.1)					
		$f(x) = x(\pi - x)$ in $0 < x < \pi$.							

c. Determine the constant term and the first cosine and sine terms of the

Fourier series expansion of y from the following data. 135 | 180 | 225 | 90 315

MODULE - 2

a. Find the Complex Fourier transform of the function. 3.

$$f(x) = \begin{cases} 1 & \text{for } |x| \le a \\ 0 & \text{for } |x| > a \end{cases}$$

b. Find the Fourier Transform of
$$f(x) = e^{-|x|}$$
.

Find the Fourier Transform of
$$f(x) = e^{-|x|}$$
.

Find the Fourier Transform of
$$f(x) = \begin{cases} 1-|x| & \text{for } |x| \le 1 \\ 0 & \text{for } |x| > 1 \end{cases}$$
 and hence

deduce that
$$\int_{0}^{\infty} \frac{\sin^2 t}{t^2} dt = \frac{\pi}{2}.$$

4. **a.** Find the Fourier Sine and Cosine Transform of
$$f(x) = \begin{cases} x & 0 < x < 2 \\ 0 & \text{elsewhere} \end{cases}$$
 (2:2:1.2.1)

b. Find the Fourier Sine and Cosine Transform of
$$f(x) = e^{-\alpha x}$$
, $\alpha > 0$.

Find the Fourier Cosine transform of
$$f(x) = \begin{cases} x & \text{for } 0 < x < 1 \\ 2-x & \text{for } 1 < x < 2 \\ 0 & \text{for } x > 2 \end{cases}$$
 (2:2:1.2.1)

(2:2:1.2.1)

07

06

07

(3:1:1.2.1)

(2:2:1.2.1)

(2:2:1.2.1)

(2:2:1.2.1)

MODULE - 3

- 5. **a.** Use Taylor's series method to find y at x = 0.1 considering terms up to **06** (2:3:1.2.1) the third degree given that $\frac{dy}{dx} = x^2 + y^2$ and y(0) = 1.
 - **b.** Using modified Euler's method find y (0.1) correct to four decimal places of (2:3:1.2.1) solving the equation $\frac{dy}{dx} = x y^2$, y (0) =1 taking h= 0.1.
 - c. Solve: $(y^2 x^2)dx = (y^2 + x^2)dy$ for x=0.2 given that y=1 at x=0 by 07 (2:3:1.2.1) applying R-K method of order 4.

OR

- 6. **a.** Using Modified Euler's method find y (20.2) given that $\frac{dy}{dx} = \log_{10} \left(\frac{x}{y}\right) \text{ with y (20) = 5 and h=0.2.}$
 - **b.** Apply Milne's method to compute y (1.4) correct to 4 decimal places given $\frac{dy}{dx} = x^2 + \frac{y}{2}$ and the following data: y(1) = 2, y(1.1) = 2.2156, y(1.2) = 2.4649, y(1.3) = 2.7514.
 - c. If $\frac{dy}{dx} = 2e^x y$, y(0) = 2, y(0.1) = 2.010, y(0.2) = 2.040, y(0.3) = 2.090. (2:3:1.2.1) find y (0.4) by using Adams-Bashforth method.

MODULE – 4

- 7. **a.** Use Picard's method to find y(0.1) and z(0.1) given that $\frac{dy}{dx} = x + z$, $\frac{dz}{dx} = x y^2$, and y(0) = 2, z(0) = 1. (carry out two approximations)
 - Solve $\frac{dy}{dx} = 1 + zx$, $\frac{dz}{dx} + xy = 0$, y(0) = 0, z(0) = 1 at x = 0.3 by applying fourth order R-K method. (3 :4 : 1.2.1)
 - c. Obtain the Picard's third approximation to the solution of the system of equations $\frac{dx}{dt} = 2x + 3y$, $\frac{dy}{dt} = x 3y$, t=0, x=0, y=1/2. Hence find x and y at t=0.2.

OF

- 8. a. Given y'' xy' y = 0 with the initial conditions y(0) = 1, y'(0) = 0. (2:4:1.2.1) compute y(0.2) and y'(0.2) using R-K method of fourth order.
 - Apply Milne's method to compute y (0.8) given that $\frac{d^2y}{dx^2} = 1 2y\frac{dy}{dx}$ (3:4:1.2.1) and the following table of initial values.

	x	0	0.2	0.4	0.6			
	У	0	0.02	0.0795	0.1762			
	1,	0	0.1996	0.3937	0.5689			

By R-K method of fourth order, solve $\frac{d^2y}{dx^2} = x\left(\frac{dy}{dx}\right)^2 - y^2$ for x=0.2 correct to four decimal places, using the initial conditions y=1 and y' = 0 when x=0.

MODULE - 5

9. a. Obtain the Z-Transform of $\cos n\theta$ and $\sin n\theta$. 06 (2:5:1.2.1)

b. Find the Z-Transform of $\cosh(n\pi/2 + \theta)$. **07** (2:5:1.2.1)

c. Solve by using Z-Transforms: $y_{n+2} - 4y_n = 0$, given that $y_0 = 0, y_1 = 2$. **07** (3:5:1.2.1)

OR

10. a. State and Prove Euler's Equation. **06** (2:5:1.2.1)

Find the Extremal of the functional $\int_{x_1}^{x_2} \left(y' + x^2 y'^2 \right) dx$ (2:5:1.2.1)

c. Prove that the geodesics on a plane are straight lines. 07 (3:5:1.2.1)

** ** **