Basavarajeswari Group of Institutions								
		BALLARI INSTITUTE OF TECHNOLOGY & MANAG (Autonomous Institute under Visvesvaraya Technological University, Bel		T				
TION (
USN		Course Code	2 1	E C 3 4				
Third Semester B.E. Degree Examinations, April/May 2023								
ANALOG ELECTRONIC CIRCUITS Duration: 3 hrs Max. Marks: 100								
noie.		. Answer any FIVE full questions, choosing ONE full question from each modul Missing data, if any, may be suitably assumed	е.					
Q . I	No	Question	<u>Marks</u>	(RBTL:CO:PI)				
		<u>MODULE – 1</u>						
1.	a.	Sketch the equivalent circuit of a diode with characteristics.	04	(2:1:1.3.1)				
	b.	Explain the Centre-Tapped full wave rectifier and calculate the	08	(2:1:1.3.1)				
	c.	efficiency. Define clippers and explain the working of series clippers circuit along with the waveforms.	08	(2:1:1.3.1)				
OR								
2.	a.	Explain the construction and operation of BJT and also write the symbols of pnp and npn transistor.	06	(2:1:1.3.1)				
	b.	Explain fixed voltage and adjustable voltage regulators.	08	(2:1:1.3.1)				
	c.	With neat diagram explain the transfer and drain characteristics of n-channel MOSFET.	06	(2:1:1.3.1)				
		<u>MODULE – 2</u>						
3.	a.	Considering the conceptual circuit of common emitter configuration, derive the expressions for g_m , r_π , r_e . Draw the hybrid π - model of a transistor.	08	(2:2:1.3.1)				
	b.	A BJT having $\beta = 150$ is biased at a DC collector current 2 mA. Find the value of g_m , r_e , r_{π} , at bias point.	04	(2:2:2.1.2)				
	c.	Obtain the DC conditions for voltage divider bias circuit for a CE-BJT	08	(2:2:1.3.1)				
		amplifier and give design constraints along with remark on stability of Q. OR						
4.	a.	Explain biasing of MOSFET by fixing V _{GS} .	06	(2:2:1.3.1)				
	b.	Draw the small signal equivalent model of MOSFET, derive an expression for voltage gain and transconductance.	08	(2:2:1.3.1)				
	c.	What is transconductance and mention the three different expressions used to calculate transconductance.	06	(2:2:1.3.1)				
<u>MODULE – 3</u>								
5.	a.	With a neat circuit diagram and ac equivalent circuit, derive the expression for R_{in} , R_0 , A_v for a common source amplifier.	08	(2:3:1.3.1)				
	b.	Explain the low frequency response of CS amplifier using MOSFET and derive lower cut-off frequency	08	(2:3:1.3.1)				
	c.	Explain Junction capacitance in MOSFET.	04	(2:3:1.3.1)				
		OR						
6.	a. b.	Obtain the high frequency response of a CS amplifier. Write a short note on current Mirrors and current steering circuits.	10 10	(2:3:1.3.1) (2:3:1.3.1)				

MODULE – 4

		MODULE					
7.	a.	With neat block diagram explain the working of a current series feedback amplifier. Obtain expressions for gain, input resistance and output resistance with feedback	10	(2:4:1.3.1)			
	b.	Determine the voltage gain, input and output impedance with feedback for a voltage series feedback amplifier having A = -100, Ri =10 k Ω , R ₀ = 20 k Ω for a feedback of (i) β = 1 and (ii) β = - 0.5.	10	(2:4:2.1.2)			
_		•					
8.	a.	Explain a class B output stage. Prove that the maximum conversion efficiency of a class B transformer coupled amplifier is 78.5%.	08	(2:4:1.3.1)			
	b.	Compare different types of power amplifiers.	06	(2:4:1.3.1)			
	0	Explain in brief the working of a Class C power amplifier.	06	(2:4:1.3.1)			
	c.	Explain in oner the working of a Class C power amplituer.	00	(2.7.1.3.1)			
MODULE – 5							
9.	a.	Explain the working of instrumentation amplifier using transducer bridge and derive the expression for output voltage.	10	(2:5:1.3.1)			
	b.	Explain the working of a successive approximation type of ADC.	10	(2:5:1.3.1)			
		OR					
		UK UK					
10.	a.	Draw the circuit and frequency response of a first order low pass filter.	06	(2:5:1.3.1)			
	b.	Draw the circuit and explain the frequency response of a second order band pass filter.	06	(2:5:1.3.1)			
	c.	Explain the operation of Mono-stable multi vibrator with relevant diagrams and waveforms.	08	(2:5:1.3.1)			

** ** **