BALLARI INSTITUTE OF TECHNOLOGY \& MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)
USN \square Course Code

$\mathbf{2}$	$\mathbf{1}$	\mathbf{E}	\mathbf{C}	$\mathbf{3}$	$\mathbf{4}$

Third Semester B.E. Degree Examinations, April/May 2023
 ANALOG ELECTRONIC CIRCUITS

Duration: 3 hrs
Max. Marks: 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2. Missing data, if any, may be suitably assumed
Q. No Question
MODULE - 1

1. a. Sketch the equivalent circuit of a diode with characteristics. 04
b. Explain the Centre-Tapped full wave rectifier and calculate the 08efficiency.
c. Define clippers and explain the working of series clippers circuit along 08with the waveforms.
OR
2. a. Explain the construction and operation of BJT and also write the symbols 06 of pnp and npn transistor.
b. Explain fixed voltage and adjustable voltage regulators. 08
c. With neat diagram explain the transfer and drain characteristics of n - 06
channel MOSFET.
MODULE - 2
3. a. Considering the conceptual circuit of common emitter configuration, 08
Marks (RBTL:CO:PI)
($2: 1: 1.3 .1$)($2: 1: 1.3 .1$)(2:1:1.3.1)
($2: 1: 1.3 .1$)(2:1:1.3.1) derive the expressions for g_{m}, r_{π}, r_{e}. Draw the hybrid π - model of a transistor.
b. A BJT having $\beta=150$ is biased at a DC collector current 2 mA . Find the 04value of g_{m}, r_{e}, r_{π}, at bias point.
c. Obtain the DC conditions for voltage divider bias circuit for a CE-BJT 08 amplifier and give design constraints along with remark on stability of Q .
OR
4. a. Explain biasing of MOSFET by fixing V_{GS}. 06
b. Draw the small signal equivalent model of MOSFET, derive an 08
(2:2:1.3.1)expression for voltage gain and transconductance.
c. What is transconductance and mention the three different expressions 06 used to calculate transconductance.
MODULE - 3
5. a. With a neat circuit diagram and ac equivalent circuit, derive the 08 expression for $\mathrm{R}_{\mathrm{in}}, \mathrm{R}_{0}, \mathrm{~A}_{\mathrm{v}}$ for a common source amplifier.
b. Explain the low frequency response of CS amplifier using MOSFET and 08 derive lower cut-off frequency
c. Explain Junction capacitance in MOSFET. 04 04(2:3:1.3.1)(2:3:1.3.1)
OR
6. a. Obtain the high frequency response of a CS amplifier. 10
b. Write a short note on current Mirrors and current steering circuits. 10

MODULE-4

7. a. With neat block diagram explain the working of a current series feedback amplifier. Obtain expressions for gain, input resistance and output resistance with feedback
b. Determine the voltage gain, input and output impedance with feedback for a voltage series feedback amplifier having $\mathrm{A}=-100, \mathrm{Ri}=10 \mathrm{k} \Omega, \mathrm{R}_{0}=$ $20 \mathrm{k} \Omega$ for a feedback of (i) $\beta=1$ and (ii) $\beta=-0.5$.

OR
8. a. Explain a class B output stage. Prove that the maximum conversion 08 efficiency of a class B transformer coupled amplifier is 78.5%.
b. Compare different types of power amplifiers.
c. Explain in brief the working of a Class C power amplifier.

MODULE - 5
9. a. Explain the working of instrumentation amplifier using transducer bridge and derive the expression for output voltage.
b. Explain the working of a successive approximation type of ADC.

OR

10. a. Draw the circuit and frequency response of a first order low pass filter.
b. Draw the circuit and explain the frequency response of a second order band pass filter.
c. Explain the operation of Mono-stable multi vibrator with relevant diagrams and waveforms. 08
