BALLARI INSTITUTE OF TECHNOLOGY \& MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN \square Course Code

$\mathbf{2}$	$\mathbf{1}$	\mathbf{E}	\mathbf{C}	$\mathbf{3}$	$\mathbf{3}$

Third Semester B.E. Degree Examinations, April/May 2023 DIGITAL CIRCUIT DESIGN USING VERILOG

Duration: 3 hrs

Max. Marks: 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. 2. Missing data, if any, may be suitably assumed
(RBTL:CO:PI)

MODULE - 1

1. a. Simplify the following using K-Map (Karnaugh Map)

$$
f(A, B, C, D)=\sum m(0,2,3,8,10,11,12,14)
$$

b. (i) Convert from SOP to canonical SOP: $f=A \bar{B}+A \bar{C}+B C$
(ii) Convert from POS to canonical POS : $f=(A+\bar{B}) \bullet(\bar{B}+C)$
c. A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non- BCD code is entered, the output is to be true. Determine the truth table and expression. Simplify and draw the circuit.

OR
2. a. Define (i) Literals (ii) Minterm (iii) Maxterm (iv) SOP

06
(v) Canonical SOP (vi) Canonical POS
b. Simplify the following using 1 -variable MEV map
$f(A, B, C, D)=\sum m(2,3,4,5,13,15)+\sum d(8,9,10,11)$
c. Four soldiers, A, B, C and D, volunteer to perform an important military

08
task if any one of the following conditions are satisfied.
(i) Either A or B or both must go.
(ii) Either both A and C go or neither goes.
(iii) If B goes then A and D must also go.

Determine the expression that specifies the combinations of volunteers that can get the assignment. Simplify and draw the circuit.

MODULE - 2

3. a. Explain typical design flow for designing VLSI IC circuit with the help of appropriate flow diagram.
b. Write the following numbers in appropriate format for Verilog coding:

06
(i) Decimal number 123 as a sized 8-bit number in binary. Use _ for readability.
(ii) A 16-bit hexadecimal unknown number with all x's.
(iii) A 4-bit negative 2 in decimal. Write the 2 's complement form for this number.
(iv) An unsized hex number 1234, 8FF.
(v) An unsized octal number 765, 123
(vi) 3-bit binary number with MSBs 10 and least significant bit (LSB) unknown.
c. Write Verilog code for 2-to-1 multiplexer using bufif0 and bufif1 gates as shown in Fig. Q3 (c).

Fig. Q3 (c)
OR
4. a. Explain digital design methodologies with block diagram.
b. An interconnect switch (IS) contains the following components, a shared memory (MEM), a system controller (SC) and a data crossbar (Xbar). Define the modules MEM, SC, and Xbar, using the module/end module keywords. You do not need to define the internals. Assume that the modules have no terminal lists.
c. Write the output of following:
a. initial
begin
\$display ("Set = \%b $\backslash t$ Reset $=\% b \backslash t$ Q $=\% b \backslash n "$, set, reset, q);

$$
\text { set }=0 \text {; reset }=0 ;
$$

\#5 reset = 1;

$$
\# 5 \text { reset }=0 ;
$$

$$
\# 5 \mathrm{set}=1
$$

end
b. Are the following statements legal strings? If not, write the correct strings.
(i) "Please ring a bell $\backslash 007$ "
(ii) "This is a backslash \backslash characterın"

MODULE - 3

5. a. Define the following in your own words
(i) Fan out
(ii) $\mathrm{I}_{\mathrm{ccH}}$ (iii) V_{oH}
(iv) $\mathrm{T}_{\mathrm{pLH}}$
(v). $\mathrm{I}_{\mathrm{os}} \quad$ (vi). V_{IH}
b. Draw the logic symbol for a 3-to-8 logic decoder that has active low data inputs, an active high enable, and active low data outputs. Use such a decoder to realize the Boolean equation.
$X=f(a, b, c)=\sum m(0,3,5,6)$
c. Sketch the logic symbol for a 10 -line to BCD encoder. Show how 10 events can be encoded into a four-bit data bus with the help of truth table.

OR

6. a. Realize the following Boolean functions using the appropriate multiplexer when a single variable MEV is permitted.
$y=f(a, b, c, d)=\sum m(0,3,4,5,7,9,13,15)$
b. Write a note on tristate buffer.
c. Design a two digit BCD adder using 74LS83. Also write the logic equations for a four stage look ahead carry adder in terms of data and carry inputs.
(2:4:1.6.1)

MODULE - 4

7. a. Draw the logic diagram. Construct the excitation table and write the

06

06
b. Define following state machine notations:
(i) Input variable (ii) State variable (iii) Excitation variable (iv) State (v) Present state (vi) Next state
c. Design asynchronous divide by 2 and divide by 4 counter using JK flip flops.

OR

8. a. Sketch the model diagrams for a Mealy and Moore sequential circuit. 06

Describe the difference between Mealy and Moore circuits using model diagrams.
b. Explain the following:

06
(i) SISO shift register (ii) PIPO shift register.
c. Design 3-bit asynchronous divide by 8 counter using JK flip flops.

MODULE - 5

9. a. Write a Verilog dataflow description for $4: 1$ multiplexer using logic equation.
b. Write a Verilog code to detect a pattern 101 (MSB first) using Mealy 08 circuit.
c. Differentiate between the following operators used in Verilog with an example
(i) Logical and reduction operators (ii) concatenation and replication operators (iii) equality and case equality operators.

OR
10. a. Differentiate between initial and always statements with example.
b. Explain delay based timing controls with appropriate examples.
c. Write a Verilog code to detect a pattern 101 (MSB first) using Moore circuit.

