BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT (Autonomous Institute under Visvesvaraya Technological University, Belagavi)							
USN	I [Course Code 2	1	E C 3 3			
		Third Semester B.E. Degree Examinations, April/May 2 DIGITAL CIRCUIT DESIGN USING VERILOG	2023				
Dura	tion	3 hrs	Ν	Iax. Marks: 100			
Note:	1 2.	Answer any FIVE full questions, choosing ONE full question from each module. Missing data, if any, may be suitably assumed					
<u>Q</u> . N	1 <u>0</u>	Question	<u>Marks</u>	(RBTL:CO:PI)			
		<u>MODULE – 1</u>					
1.	a.	Simplify the following using K-Map (Karnaugh Map) $f(A, B, C, D) = \sum m(0, 2, 3, 8, 10, 11, 12, 14)$	06	(3:1:1.7.1)			
	b.	(i) Convert from SOP to canonical SOP: $f = A\overline{B} + A\overline{C} + BC$	06	(2:1:1.6.1)			
		(ii) Convert from POS to canonical POS : $f = (A + \overline{B}) \bullet (\overline{B} + C)$					
	c.	A four-bit binary character is presented to a circuit that must detect whether the input is a legitimate BCD code. If a non-BCD code is entered, the output is to be true. Determine the truth table and expression. Simplify and draw the circuit.	08	(4 :1 : 1.7.1)			
		OR					
2.	a.	Define (i) Literals (ii) Minterm (iii) Maxterm (iv) SOP (v) Canonical SOP (vi) Canonical POS	06	(2:1:1.6.1)			
	b.	Simplify the following using 1-variable MEV map $f(A,B,C,D) = \sum m(2,3,4,5,13,15) + \sum d(8,9,10,11)$	06	(3:1:1.7.1)			
	c.	 Four soldiers, A, B, C and D, volunteer to perform an important military task if any one of the following conditions are satisfied. (i) Either A or B or both must go. (ii) Either both A and C go or neither goes. (iii) If B goes then A and D must also go. Determine the expression that specifies the combinations of volunteers that can get the assignment. Simplify and draw the circuit. 	08	(4 :1 : 1.7.1)			
		MODULE – 2					
3.	a.	Explain typical design flow for designing VLSI IC circuit with the help of appropriate flow diagram.	06	(2:4:1.6.1)			
	b.	 Write the following numbers in appropriate format for Verilog coding: (i) Decimal number 123 as a sized 8-bit number in binary. Use _ for readability. (ii) A 16-bit hexadecimal unknown number with all x's. (iii) A 4-bit negative 2 in decimal. Write the 2's complement form for this number. (iv) An unsized hex number 1234, 8FF. (v) An unsized octal number 765, 123 (vi) 3-bit binary number with MSBs 10 and least significant bit (LSB) unknown. 	06	(2:4:1.6.1)			

'Basavarajeswari Group of Institutions

c. Write Verilog code for 2-to-1 multiplexer using bufif0 and bufif1 gates as shown in Fig. Q3 (c).

OR

4. 06 (2:4:1.6.1)**a.** Explain digital design methodologies with block diagram. **b.** An interconnect switch (IS) contains the following components, a shared 06 (2:4:1.6.1)memory (MEM), a system controller (SC) and a data crossbar (Xbar). Define the modules MEM, SC, and Xbar, using the module/end module keywords. You do not need to define the internals. Assume that the modules have no terminal lists. (2:4:1.7.1)08 Write the output of following: c. a. initial begin display ("Set = %b \t Reset= %b \t Q = %b \n", set, reset, q); set = 0; reset = 0; #5 reset = 1;#5 reset = 0;#5 set = 1;end b. Are the following statements legal strings? If not, write the correct strings. (i) "Please ring a bell \007" (ii) "This is a backslash \ character\n" MODULE – 3 Define the following in your own words 06 (2:2:1.6.1)5. a. (ii) I_{ccH} (iii) V_{oH} (i) Fan out (iv) T_{pLH} (v). I_{os} (vi). V_{IH} **b.** Draw the logic symbol for a 3-to-8 logic decoder that has active low data 06 (3:2:1.7.1)inputs, an active high enable, and active low data outputs. Use such a decoder to realize the Boolean equation. $X = f(a,b,c) = \sum m(0,3,5,6)$ Sketch the logic symbol for a 10-line to BCD encoder. Show how 10 (3:2:1.7.1)**08** c. events can be encoded into a four-bit data bus with the help of truth table. OR Realize the following Boolean functions using the appropriate 06 (3:2:1.7.1)6. a. multiplexer when a single variable MEV is permitted. $y = f(a,b,c,d) = \sum m(0,3,4,5,7,9,13,15)$ **b.** Write a note on tristate buffer. 06 (2:2:1.6.1)c. Design a two digit BCD adder using 74LS83. Also write the logic 08 (3:2:1.7.1)equations for a four stage look ahead carry adder in terms of data and

carry inputs.

08

		MODULE – 4		
7.	a.	Draw the logic diagram. Construct the excitation table and write the characteristic equation for (i) D Flip-flop (ii) T flip-flop	06	(2:3:1.6.1)
	b.	Define following state machine notations: (i) Input variable (ii) State variable (iii) Excitation variable (iv) State (v) Present state (vi) Next state	06	(2:3:1.6.1)
	c.	Design asynchronous divide by 2 and divide by 4 counter using JK flip flops.	08	(3:3:1.7.1)
		OR		
8.	a.	Sketch the model diagrams for a Mealy and Moore sequential circuit. Describe the difference between Mealy and Moore circuits using model diagrams.	06	(2:3:1.6.1)
	b.	Explain the following:	06	(2:3:1.6.1)
		(i) SISO shift register (ii) PIPO shift register.		
	c.	Design 3-bit asynchronous divide by 8 counter using JK flip flops.	08	(3:3:1.7.1)
		MODULE – 5		
9.	a.	Write a Verilog dataflow description for 4:1 multiplexer using logic equation.	06	(3:4:1.7.1)
	b.	Write a Verilog code to detect a pattern 101(MSB first) using Mealy circuit.	08	(3:3:1.7.1)
	c.	Differentiate between the following operators used in Verilog with an example	06	(3:4:1.6.1)
		(i) Logical and reduction operators (ii) concatenation and replication operators (iii) equality and case equality operators.		
		OR		
10	8	Differentiate between initial and always statements with example	06	(3:4:1.6.1)
100	ш. Ь	Explain delay based timing controls with appropriate exemples	06	$(2 \cdot 4 \cdot 1 \cdot 6 \cdot 1)$
	υ.	Explain delay based unning controls with appropriate examples.	00	(2.4.1.0.1)
	c.	Write a Verilog code to detect a pattern 101 (MSB first) using Moore circuit.	08	(3:3:1.6.1)

** ** **