		Basavarajeswari Group of Institutions					
BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT (Autonomous Institute under Visvesvaraya Technological University, Belagavi)							
USI	N	Course Code 2	1 C	S 3 4			
D		Third Semester B.E. Degree Examinations, April/May DIGITAL SYSTEM DESIGN AND COMPUTER ORGAN (Common to CSE & AIML)	NIZAT	_			
		: 3 hrs		lax. Marks: 100			
Note		Answer any FIVE full questions, choosing ONE full question from each modul Missing data, if any, may be suitably assumed	e.				
Q. 1	N <u>o</u>	Question	<u>Marks</u>	(RBTL:CO:PI)			
 MODULE – 1							
1.	a.	Solve the following functions using K-Map to find minimum SOP. Also list all essential prime implicants. $f(A, B,C,D) = \sum m (1,3, 4, 11) + d (2, 7, 8, 12, 14, 15)$	10	(3:1:1.7.1)			
	b.	Solve the following functions using K-Map to find minimum POS. Also list all essential prime implicants. $f(A, B,C,D) = \prod M(0,1,6,8,11,12)$. $\prod D(3,7,14,15)$	10	(3:1:1.7.1)			
		OR					
2.	a.	Find all prime implicants using Quine McCluskey method and list all essential prime implicants using implicant chart. F (a,b,c,d) = $\sum m (0,1,3,5,6,7,8,10,14,15)$	10	(3:1:1.7.1)			
	b.	Using Map entered variable use four variable map to find minimum SOP $Z(a,b,c,d,e,f,g) = \sum m(0,3,13,15) + \sum d(1,2,7,9,14)$	10	(3:1:1.7.1)			
		<u>MODULE – 2</u>					
3.	a.	What is multiplexer? Design 8:1 MUX using two 4:1 mux and one 2:1 Mux.	06	(3:2:1.7.1)			
	b.	What is Decoder? Realize full adder using 3:8 line decoders using: (i) Two OR gates (ii) Two NOR gates	07	(3:2:1.7.1)			
	c.	Design PLA circuit for the following function: $F0=\sum m (0,1, 4, 6)$ $F1=\sum m (2, 3, 4, 6, 7)$	07	(3:2:1.7.1)			
		$F_2 = \sum m (0, 1, 2, 6)$ $F_3 = \sum m (2, 3, 5, 6, 7).$					
		OR					
4.	a.	Implement full adder and full subtractor using a PAL.	10	(3:2:1.7.1)			
	b.	Derive characteristics equation for J K Flip-Flop, S R Flip-Flop, D Flip- Flop, and T Flip-Flop.	10	(3:2:1.7.1)			
-	_	$\frac{\text{MODULE} - 3}{\text{Eventsing S} + 1}$	10	(2, 2, 1, 7, 1)			
5.	a. b.	Explain 8-bit serial-in, serial-out shift register using S R Flip-Flop. Construct MOD-5 counter using J K Flip-Flop.	10 10	(2:3:1.7.1) (3:3:1.1.1)			
	υ.	OR	10	(5.5.1.1.1)			
6.	a.	Construct counter using JK Flip-Flop for the following counting sequence	10	(3:3:1.7.1)			
	b.	000→100→111→010→011→000 Explain a short note on : (i) Sequential parity checker (ii) Register transfers	10	(2:3:1.7.1)			

MODULE – 4

		MODULE		
7.	a.	Explain basic operational concepts with neat diagram and example.	08	(2:4:1.7.1)
	b.	What is performance? Give basic performance equation and overall SPEC rating of computer.	08	(2:4:1.7.1)
	c.	Explain Big-Endian and Little-Endian. Show the content of the two memory words at address 1000 and 1004 for the name "johnson" has been entered in both methods.	04	(2:4:1.7.1)
		OR		
8.	a.	Explain any 4 addressing modes with an example.	08	(2:4:1.7.1)
	b.	Explain basic instruction types with an example.	07	(2:4:1.7.1)
	c.	What is Branching? Explain with an example.	05	(2:4:1.7.1)
		<u> MODULE – 5</u>		
9.	a.	Explain handling multiple devices simultaneous request(daisy chain, arrangement of priority groups)	08	(2:5:1.7.1)
	b.	Construct a program that reads a line of characters and display it.	05	(3:5:1.7.1)
	c.	What is DMA? What are it advantages? With supporting diagram, explain different registers used in DMA interface.	07	(2:5:1.7.1)
		OR		
10.	a.	Explain addition and subtraction of signed numbers using 2s compliment method with an example.	06	(2:5:1.7.1)
	L	(i) -5 and 7 (ii) -3 and -8 Construct 4 hit Corry Look About odder, and writ the expression for	07	(3:5:1.7.1)
	D.	Construct 4 bit Carry Look Ahead adder, and unit the expression for Ci+1. And compare its performance with Ripple Bit Carry adder.	U/	(3.3.1./.1)
	c.	Explain booth algorithm to perform the multiplication on $+13$ and -06 .	07	(2:5:1.7.1)

** ** **