BALLARI INSTITUTE OF TECHNOLOGY & MANAGEMENT

(Autonomous Institute under Visvesvaraya Technological University, Belagavi)

USN									Course Code	2	1	C	2	3	3
									Course Coue	4	1	C	В	3	3

Third Semester B.E. Degree Examinations, April/May 2023

DATA STRUCTURES AND APPLICATIONS

Dur	ation	(Common to CSE & AIML) : 3 hrs	N	Iax. Marks: 100
Note		. Answer any FIVE full questions, choosing ONE full question from each modul		144 1/141 145/ 100
1,000		Missing data, if any, may be suitably assumed		
0.	<u>No</u>	<u>Question</u>	<u>Marks</u>	(RBTL:CO:PI)
		MODULE – 1		*
1.	a.	Write a C program to define employee structure using members like ename, eid, DOJ (DD, MM, YY) and dept. Read and display details of 5 employees. Use nested structures.	08	(3:1:1.4.1)
	b.	Define data structures. Give its classification and explain with examples.	06	(2:1:1.4.1)
	c.	Define pointer. How do you declare and initialize pointers? Write a program to find sum of elements of an integer array using pointer. OR	06	(3:1:1.4.1)
			00	(2 1 1 4 1)
2.	a.	List and explain the C functions used for dynamic memory allocation.	08 06	(2:1:1.4.1) (3:2:1.4.1)
	b.	Consider the following polynomials. $A(x) = 5x^{200} + 8x^3 + 2$ and $B(x) = 10x^5 - 4x^3 + x - 6$	UO	(3:2:1.4.1)
		Diagrammatically represent the above polynomials using array of structures. Also write C structure to represent a term of the polynomial.		
	c.	What is Sparse matrix? With an example explain how to represent sparse matrix using triplet format.	06	(3:2:1.4.1)
		$\underline{MODULE - 2}$		
3.	a.	Define Stack. Write C functions to perform push, pop and display operations using array.	08	(3:2:1.7.1)
	b.	Convert the following infix expressions to their postfix form (i) $A+(B*C-D/E^F)*G*H$ (ii) $A-B/(C*D^E)$	06	(3:3:2.5.2)
	c.	Write an algorithm to evaluate postfix expression.	06	(3:3:2.5.2)
		OR		
4.	a.	Define Recursion. Explain with diagram recursive solution for Tower of Hanoi problem.	07	(3:3:1.7.1)
	b.	What is the advantage of circular queue over linear queue? Write a C functions to perform insert and delete operations on a circular queue of integers.	08	(3:3:1.4.1)
	c.	Write a short note on DEQUEs and priority queues.	05	(3:3:1.4.1)
		$\frac{\text{MODULE} - 3}{\text{MODULE}}$		
5.	a.	Differentiate between arrays and linked lists.	03	(3:4:1.4.1)
	b.	Write a C functions to perform the following operations on single linked	09	(3:3:1.4.1)
		list. (i) Insert a node at the beginning of linked list (ii) Delete a node at the end of linked list		

(iii) Display the elements of linked list

Note: (RBTL - Revised Bloom's Taxonomy Level: CO - Course Outcome: PI - Performance Indicator)

	c.	Consider a doubly linked list of nodes 10, 20, 40, 80, 50. Write a procedure to perform the following operations on doubly linked lists. (i) Inserting node 30 after 20 (ii) Deleting node 80 OR	08	(3:3:1.4.1)
6.	a.	Write C functions to perform following operations on doubly linked list. (i) Search a key element in the doubly linked list (ii) Concatenate two doubly linked lists	08	(3:3:1.7.1)
	b.	Write an algorithm to perform addition of two polynomials using linked lists.	08	(3:4:1.7.1)
	c.	Give diagrammatic linked representation of the following sparse matrix. $ \begin{bmatrix} 00400 \\ 65000 \\ 03010 \\ 00002 \end{bmatrix} $	04	(3:4:1.7.1)
		$\underline{\mathbf{MODULE} - 4}$		
7.	a.	Define the following terms and give examples. (i) Binary Tree (ii) Complete Binary Tree (iv) Skewed Binary Tree	08	(1:3:1.4.1)
	b.	Explain array and linked representation of binary trees with suitable example.	06	(3:3:1.4.1)
	c.	Write the C recursive functions to perform inorder, preorder and postorder traversals in a binary tree.	06	(3:5:1.7.1)
		OR	0.6	(1 4 1 4 1)
8.	a.	Write a short note on Threaded binary tree.	06	(1:4:1.4.1)
	b.	Construct a Binary Search Tree (BST) for the nodes 100,85,45,55,110,70,20,65,105,125. Write inorder, preorder and postorder traversal sequences of the constructed BST.	06	(3:5:1.7.1)
	c.	Write C functions to perform the following operations on Binary Search Tree (BST) (i) Inserting a node into BST (ii) Search for a key element in BST using recursion	08	(3:3:1.7.1)
		MODULE – 5	40	(2.5.1.7.1)
9.	a. b.	Define AVL Tree. Construct a balanced AVL tree for months of the year. Explain Red Black Tree with an example.	10 06	(3 :5: 1.7.1) (2 :5: 1.7.1)
	о. с.	Define the following terms and give examples	04	(1:3: 1.4.1)
	ι.	(i) Graph (ii) Directed graph (iii) Undirected graph (iv) Sub graph OR	•	(1.3.1.11)
10.	0	Explain adjacency matrix and adjacency list representation of graphs with	08	(2:3:1.4.1)
10.	a.	an example.	vo	(4 .3. 1.7.1)
	b.	Write an algorithm for breadth first search traversal in a graph and explain with an example.	06	(3:5:2.5.2)
	c.	List and explain different hashing functions.	06	(1:5: 1.4.1)

** ** **